EVA: evaluation of protein structure prediction servers

نویسندگان

  • Ingrid Y. Y. Koh
  • Volker A. Eyrich
  • Marc A. Martí-Renom
  • Dariusz Przybylski
  • Mallur S. Madhusudhan
  • Narayanan Eswar
  • Osvaldo Graña
  • Florencio Pazos
  • Alfonso Valencia
  • Andrej Sali
  • Burkhard Rost
چکیده

EVA (http://cubic.bioc.columbia.edu/eva/) is a web server for evaluation of the accuracy of automated protein structure prediction methods. The evaluation is updated automatically each week, to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently assesses servers for secondary structure prediction, contact prediction, comparative protein structure modelling and threading/fold recognition. Every day, sequences of newly available protein structures in the Protein Data Bank (PDB) are sent to the servers and their predictions are collected. The predictions are then compared to the experimental structures once a week; the results are published on the EVA web pages. Over time, EVA has accumulated prediction results for a large number of proteins, ranging from hundreds to thousands, depending on the prediction method. This large sample assures that methods are compared reliably. As a result, EVA provides useful information to developers as well as users of prediction methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EVAcon: a protein contact prediction evaluation service

Here we introduce EVAcon, an automated web service that evaluates the performance of contact prediction servers. Currently, EVAcon is monitoring nine servers, four of which are specialized in contact prediction and five are general structure prediction servers. Results are compared for all newly determined experimental structures deposited into PDB ( approximately 5-50 per week). EVAcon allows ...

متن کامل

EVA: continuous automatic evaluation of protein structure prediction servers

UNLABELLED Evaluation of protein structure prediction methods is difficult and time-consuming. Here, we describe EVA, a web server for assessing protein structure prediction methods, in an automated, continuous and large-scale fashion. Currently, EVA evaluates the performance of a variety of prediction methods available through the internet. Every week, the sequences of the latest experimentall...

متن کامل

In Silico Perspectives on the Prediction of the PLP’s Epitopes involved in Multiple Sclerosis

Background: Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). The main cause of the MS is yet to be revealed, but the most probable theory is based on the molecular mimicry that concludes some infections in the activation of T cells against brain auto-antigens that initiate the disease cascade.Objectives: The Purpose of this research is the...

متن کامل

SAM-T04: what’s new in protein-structure prediction for CASP6

In previous casp experiments, our team has concentrated on fold-recognition using hidden Markov models (hmms) with fairly good results [1, 2, 3]. We have also had some success using standard neural-net methods to predict secondary structure [4], as measured by the EVA project [5]. In 2000, we started incorporating secondary structure prediction in our fold-recognition method for casp4 [3]. We e...

متن کامل

CAFASP3 in the spotlight of EVA.

We have analysed fold recognition, secondary structure and contact prediction servers from CAFASP3. This assessment was carried out in the framework of the fully automated, web-based evaluation server EVA. Detailed results are available at http://cubic.bioc.columbia.edu/eva/cafasp3/. We observed that the sequence-unique targets from CAFASP3/CASP5 were not fully representative for evaluating per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 31 13  شماره 

صفحات  -

تاریخ انتشار 2003